
Think Class Library 2.0 • CodeWarrior Port Package 1

Think Class Library 2.0
CodeWarrior Port Package

Version 1.3 • 30 May 1994
Produced by Eric Scouten

Note
This document was produced using Microsoft Word and the TrueType fonts Palatino,
Helvetica, Courier, and Zapf Dingbats. There are two versions of this document:
**README.word which is a Microsoft Word 5 document, and **README.standalone
which is a combined application/document created with Print2Pict. ❖

Think Class Library 2.0 • CodeWarrior Port Package 1

Think Class Library 2.0 • CodeWarrior Port Package 2

Contents

Chapter 1 About the TCL Port Package 1

Introduction 1
Package Requirements 1
Overview 2
For More Information 2

Chapter 2 Converting the TCL Source Code 4

Creating the Modified TCL Source Code 4
Creating the Precompiled Headers 5

Chapter 3 Converting Your Application Source Code 6

Creating a Project File 6
Building a New Project File 6
Resource File Management 7

Changes in Coding Technique 7
C++ Templates 7
Exception Handling 10

Chapter 4 Miscellaneous 11

Proposed Changes 11
Version History 11
Acknowledgments 12

Think Class Library 2.0 • CodeWarrior Port Package 2

Think Class Library 2.0 • CodeWarrior Port Package 3

About the TCL Port Package

Introduction

This document describes the TCL 2.0 CodeWarrior Port Package, a set of files which
will enable you to compile the Think Class Library version 2.0 with the Metrowerks
CodeWarrior 68K and PowerPC compilers. Read this document carefully before using
the package.
This package will be updated regularly as new versions of the Metrowerks compilers
become available and as new bug fixes or features are incorporated. The most
recent version should always be available for FTP on the site
daemon.ncsa.uiuc.edu in the directory /pub/TCL/contributors/Eric_Scouten.
Notification of these updates will be posted to the Internet newsgroup
comp.sys.mac.oop.tcl.
This package does not include the Think Class Library itself, in either original or
modified form. You must purchase a copy of Symantec C++ for Macintosh, version
7.0, in order to use the TCL.

Note
Additional information may be contained in a file named *README.extra in the root
folder of the package. ❖

Package Requirements

To make effective use of the CodeWarrior Port Package, you need the following
items:

■ Symantec C++ for Macintosh, version 7.0.
■ Metrowerks CodeWarrior Bronze, Silver, or Gold, DR/2 or newer.
■ At least 30MB disk space available on your hard drive.
■ A 680x0 Macintosh with at least 8MB of RAM, or a PowerPC Macintosh with at

least 16MB of RAM.
■ An unmodified copy of the Think Class Library, version 2.0.2. You will need the

free updater provided by Symantec to upgrade the TCL from version 2.0 to
version 2.0.2. This is available for anonymous FTP from the site
devtools.symantec.com as part of the Symantec C++ updater to version 7.0.2.
(It may also be available on other FTP sites.)

The following items will not be useful:

Think Class Library 2.0 • CodeWarrior Port Package 3

Think Class Library 2.0 • CodeWarrior Port Package 4
■ Think C or Symantec C++, version 6.0 or earlier.

Think Class Library 2.0 • CodeWarrior Port Package 4

Think Class Library 2.0 • CodeWarrior Port Package 5
■ Think Class Library, version 1.1.3 or earlier. (If you are using TCL 1.1.3, you may

wish to investigate the PTR-TCL package provided by Jon Wätte on common FTP
sites.)

■ The free updater provided by Symantec to upgrade Symantec C++ from version
6.0 to version 7.0. The updater does not include the TCL version 2.0.

■ Symantec’s PowerPC Cross Development Kit. The port package will not work
properly with the TCL version 2.0.1 included with the CDK.

Overview

Using the TCL CodeWarrior Port Package entails the following steps:

■ Converting the Think Class Library to a form usable by the Metrowerks
compilers.

■ Converting your source code to a form usable by the Metrowerks compilers.
The following chapters of this document describe these steps in detail. You should
also review the chapter entitled, “Using the Modified TCL,” which describes the
differences between the standard TCL used for the Symantec compiler and the
modified TCL used for the Metrowerks compilers.

For More Information

If you have questions about using the TCL CodeWarrior Port Package, or about the
TCL 2.0 in general, you may contact me at the following addresses:

Internet scouten@maroon.tc.umn.edu
Telephone +1 612 626 0746
Fax +1 612 626 8131
US mail Eric Scouten

PO Box 13536
Minneapolis, MN 55414

Note
These addresses are valid through the end of July 1994 only. After that time, I will be
moving to Urbana, Illinois (University of Illinois). I do not yet have new addresses to
provide. ❖

I am starting an unofficial list of bugs found in the TCL 2.0 which will be posted
regularly on the Internet newsgroup comp.sys.mac.oop.tcl. If you discover a bug
in the TCL (whether or not it is related to the CodeWarrior port), please send me an
e-mail message describing the nature of the problem so that I may include it in the
bug list (and correct it in the CodeWarrior port).

Think Class Library 2.0 • CodeWarrior Port Package 5

Think Class Library 2.0 • CodeWarrior Port Package 6
Please note that this package is provided free of charge. Although I am generally
available (and interested) to talk about this package and any related topic, I may
from time to time be unable to respond to requests for support of the package due
to other commitments.

Think Class Library 2.0 • CodeWarrior Port Package 6

Think Class Library 2.0 • CodeWarrior Port Package 7
Converting the TCL Source Code

Creating the Modified TCL Source Code

In this stage, you will create a second copy of the Think Class Library source code
on your hard drive. You should keep two copies of the TCL source code on your
drive: the original source for use when compiling with Symantec’s compiler, and the
modified source for use with CodeWarrior. (The TCL source and precompiled
headers take approximately 6MB.)

❖ W A R N I N G
It is absolutely important that you begin with the unmodified source code from the
TCL 2.0.2. If you have modified the TCL yourself, make a copy of your changes and
reinstall the TCL from your Symantec C+ 7.0 master disks. Then update the TCL
source with the updater files provided by Symantec to version 2.0.2. (If later
versions of the TCL are released, do not use these versions either.) ❖

Converting the updated TCL requires the following steps:

■ Make a copy of the Think Class Library 2.0 folder. Place this folder outside the
CodeWarrior compiler folder (and outside the Symantec C++ folder as well.)

■ Open the MultiDiff application. Select “Apply Diff...” from the File menu. A
standard open box will appear. Select the file *TCL source.diff. You will be
prompted for the top folder to apply the patches to. Select the folder which
contains the copy of the TCL you just made. Note that the changes are made in
place; thus it is important to make a copy of the TCL prior to applying the
patches.

■ Wait. There is no way to stop the patcher once it’s running. It will take several
minutes to make the changes. (On a Centris 610 it takes about 7 minutes.)

■ Copy the Templates folder from the your modified TCL folder to the TO MUNGE
folder inside the Template Munger folder of the port package. Open the
Template Munger application. It will run for a few moments and quit.

■ Open the TEMPLATE HEADERS folder. Copy the files in this folder back to the
folder where you are storing the modified TCL. (Any location inside the TCL
folder will do.)

■ Copy the header files THINK.h from your Symantec C++ folder to your
CodeWarrior folder. If you maintain separate folders for 68K and PPC compilers,
copy the header to both folders. (THINK.h can be found in the path :Symantec
C++ for Macintosh:Mac #includes:THINK #includes.)

Think Class Library 2.0 • CodeWarrior Port Package 7

Think Class Library 2.0 • CodeWarrior Port Package 8
■ Copy the header files SANE.h from your Symantec C++ folder to your

CodeWarrior folder. If you maintain separate folders for 68K and PPC compilers,
copy the header to the 68K compiler folder only. Rename the header to
ThinkSANE.h. (SANE.h can be found in the path :Symantec C++ for
Macintosh:Mac #includes:THINK #includes.)

■ You may want to use the MultiDiff application to patch one or more the
demonstration programs provided with the TCL. Project files for some of the
demo programs are included (with binaries removed).

Creating the Precompiled Headers

You will need to precompile new header files for use with the CodeWarrior
compilers. Doing so involves the following steps:

■ Open the CodeWarrior project file CW TCLHeaders68K.µ.
■ If you are using CodeWarrior DR/2, look for the line that reads:

#define TCL_CW_VERSION 3
Change the 3 to a 2. If you are using a newer version of CodeWarrior, see the
comments in the source code to see if newer versions are supported.

■ Open the Preferences… dialog, Access Paths panel. Add an access path to the
folder where you placed the modified TCL source.

■ Precompile the header file. It should take about two minutes. When it is
complete, save the file as CW TCLHeaders68K (preferably in the same folder as
your TCL source).

Repeat the same steps for the PowerPC compiler, substituting PPC for 68K in the
filenames listed above. The precompiled header files should take slightly more than
600K each on your hard drive.

Think Class Library 2.0 • CodeWarrior Port Package 8

Think Class Library 2.0 • CodeWarrior Port Package 9
Converting Your Application
Source Code

Creating a Project File

You will find it easiest to start from the project files for the Art Class demo which
was included with the port package. These projects loosely follow the segmentation
in the sample TCL project files provided by Symantec. The first segment contains
source files specific to the demonstration application. Remove these files and insert
your own source files.

Building a New Project File

If you choose to create your own project file, you will need to be aware of a few
considerations. The virtual function tables generated by the TCL tend to be rather
large. For small TCL projects, you will be able to compile “as is.” If you have more
than a few of your own classes, you will need to turn on “Far virtual function tables”
in the Preferences Language panel.
To create the list of source files, you may simply include all of the files in the
modified TCL source directory. Please note the following differences between the
CodeWarrior projects and Symantec C++ projects:

Removed Source Files
CSaver.cpp
CStack.cp
PutObject1.cpp
BRLib.π

Added Source Files
BRClaInf.cpp
BRPriStr.cpp
UDebugging.cp (from Metrowerks PowerPlant)
UExceptions.cp (from Metrowerks PowerPlant)

Think Class Library 2.0 • CodeWarrior Port Package 9

Think Class Library 2.0 • CodeWarrior Port Package 10

Resource File Management

CodeWarrior’s development environment does not include resource file management
like that in Symantec C++. I have found it simplest to rely on Symantec C++ to
perform resource management. CodeWarrior will resolve aliases when looking for
the <projectname>.rsrc file; therefore you can alias your Symantec C++ resource
file and give it the name of the CodeWarrior resource file.

Changes in Coding Technique

This section describes some of the differences between the Symantec C++ version
of the TCL and the modified TCL for CodeWarrior. The compatibility issues you will
face fall primarily into two categories: C++ templates and exception handling.

C++ Templates

As of the current release (DR/3), CodeWarrior does not support C++ templates. As
it turns out, the TCL 2.0 makes fairly light use of templates – only the classes
CPtrArray, CList, CPtrArrayIterator, and CSaver are templated classes. In
addition, CStream has some templated helper functions. At present, the port
package provides macros to replace the templates for all of these classes.
Two macros are defined for each templated class: one to declare the class (placed in
a header file) and a second to define it (placed in a source file). These macros are
triggered by a macro defined in the CW HeadersTCL.h file: (When CodeWarrior
supports templates, you may comment out this line.)

#define TCL_NO_TEMPLATES
In general, the template workaround works as follows: A class defined as
template<class T> class CTemplate<T> is instead declared as class
CTemplate_T.

The macros to declare the templated classes (used in header files) are:
CList<T> TM_DECLARE_CList(T)
CListIterator<T> TM_DECLARE_CListIterator(T)
CPtrArray<T> TM_DECLARE_CPtrArray(T)
CPtrArrayIterator<T> TM_DECLARE_CPtrArrayIterator(T)
CSaver<T> TM_DECLARE_CSaver(T)
CStream CW_Decl_StreamCalls(T)

Think Class Library 2.0 • CodeWarrior Port Package 10

Think Class Library 2.0 • CodeWarrior Port Package 11
The macros to define the templated class (used in source files) are:

Think Class Library 2.0 • CodeWarrior Port Package 11

Think Class Library 2.0 • CodeWarrior Port Package 12
CList<T> TM_DEFINE_CList(T)
CListIterator<T> TM_DEFINE_CListIterator(T)
CPtrArray<T> TM_DEFINE_CPtrArray(T)
CPtrArrayIterator<T> TM_DEFINE_CPtrArrayIterator(T)
CSaver<T> TM_DEFINE_CSaver(T)
CStream CW_Inst_StreamCalls(T)

As a practical example of how to use the substituted template class, examine the list
of collaborators maintained by CCollaborator. In CCollaborator.h the following
lines have been added (flagged by •• CW TCL comments):

#ifdef TCL_NO_TEMPLATES // •• CW TCL
#define CCollaboratorList CPtrArray_CCollaborator
#endif // •• CW TCL

class CCollaboratorList;
The original source code merely forward referenced a class named
CCollaboratorList. This class was defined in CCollaborator.cp as a subclass of
CPtrArray<CCollaborator>. In the code above , CCollaboratorList is #defined to
have the same name as the macro template class – this class is then forward
referenced by the same line of code as the original code used.
Here’s the modified declaration from CCollaborator.cp :

#ifdef TCL_NO_TEMPLATES // •• CW TCL
TM_DECLARE_CPtrArray(CCollaborator) // •• CW TCL
TM_DEFINE_CPtrArray(CCollaborator) // •• CW TCL
#else // •• CW TCL
struct CCollaboratorList : CPtrArray<CCollaborator>
{
};
#endif // •• CW TCL

The macros here both define and instantiate the stand-in template class
CPtrArray_CCollaborator.

Using Your Own Templates

You may use the Template Munger application to develop macro substitutions for
your own templated classes. Doing so involves the following steps:

■ Add the following lines to the header file which declares your templated class:
#ifdef TCL_NO_TEMPLATES
#include "<cl>.tm.h" // __TEMPLATE__ <cl>.tm.h <cl>.tem
#else

// standard template definitions
#endif

Think Class Library 2.0 • CodeWarrior Port Package 12

Think Class Library 2.0 • CodeWarrior Port Package 13
The __TEMPLATE__ comment is a special comment which triggers the Template
Munger’s macro writing behavior. It must be contained in a line-comment (//-
style comment) and must be followed by one or two filenames. The first filename
(required) is the name of the file to which the macro definitions will be written.
(It should be the same as the file which is #included.) The second filename
(optional) is the name of the source file which defines the methodsfor the
templated class. (In the TCL, this file is typically given the suffix .tem.)

■ Copy all of the header files and source files for your templated classes to the TO
MUNGE folder inside the Template Munger folder of the port package.

■ Make sure there is a TEMPLATE HEADERS folder in the Template Munger
folder. It should have no files in it. If there are files, move them out of the way or
delete them.

■ Open the Template Munger application. It will run for a few moments and quit.
■ Open the TEMPLATE HEADERS folder. Copy the files in this folder back to your

project folder. These files will have the names you designated in the
__TEMPLATE__ macro.

For each templated class it encounters, the Template Munger writes two macros to
the designated file. The first is TM_DECLARE_<classname>(T). This macro contains
the class definition which replaces template<class T> classname<t>. The second
is TM_DEFINE_<classname>(T). This macro only appears if you declared a source file
on the __TEMPLATE__ comment line. It contains the templated class’s methods.
Use these macros in the same manner described for the TCL’s templated classes.
The TM_DECLARE_<classname> macro should appear ina header file with the regular
templated class definition. The TM_DEFINE_<classname> macro should appear once
per project per templated class instantiation. Use it in the same locations that you
would use the #pragma template directive in the Symantec C++ compiler.

Template Munger has the following limitations:

■ It will not process templated functions (such as the CStream helper functions in
the TCL). You will need to write your own macros for such functions.

■ Since it uses the preprocessor macros, it may be inefficient to use Template
Munger for particularly large definitions. (In other words, I have not tested
Template Munger with any classes which are more complex than the TCL
templates.)

■ The syntax parser in Template Munger is fairly rudimentary. If you find that it
will not generate proper macros, try modifying the syntax.

■ Template Munger merely discards all preprocessor macros (any line starting
with a # is treated as a line comment). This essentially means that conditional
compilations will evaluate to true in all cases (and that statements following an
#else directive will also be included).

Think Class Library 2.0 • CodeWarrior Port Package 13

Think Class Library 2.0 • CodeWarrior Port Package 14

Exception Handling

The Bedrock Exception Library which was added to the TCL in version 2.0 seems to
be somewhat buggy, especially on the PowerPC. For this reason, I have chosen to
replace the BEL with the exception library which comes with PowerPlant on DR/3
and later. This change is triggered by a macro defined in the CW HeadersTCL.h file:

#if TCL_CW_VERSION>2
#define TCL_USE_PP_EXCEPTIONS
#endif

If you wish to retain the BEL in place of the PowerPlant library, you may comment
out this macro.
You may continue to use all of the macros defined for the TCL without changing
your source code, with the following restrictions:

■ You may not use the typed exception handling which was added in the TCL 2.0.
The macros catch_, catch_reference_, and catch_no_instance_ are not
permitted. You must use catch_all_ instead.

■ You may not reference the global variables gAskFailure, gBreakFailure,
_gTCLBreakCatch, _gTCLBreakFailure, or _gTCLBreakAssert. These variables
do not exist in this implementation. The macros which access these variables are
implemented.

■ The PowerPlant header <UException.h> must be installed in the CodeWarrior
compiler folder. The file <UException.cp> must be added to the project.

■ If the __TCL_DEBUG__ macro is defined, the PowerPlant header <UDebugging.h>
must also be installed in the CodeWarrior compiler folder. The file
<UDebugging.cp> must be added to the project.

■ Your source may not use the throw_(exception) macro. Error reporting must
take place through the standard Fail___ routines. The throw_same_() macro is
permitted.

Note
The run-time type identification (RTTI) mechanism of the BEL is still used in the
port package. ❖

Think Class Library 2.0 • CodeWarrior Port Package 14

Think Class Library 2.0 • CodeWarrior Port Package 15
Miscellaneous

Proposed Changes

This port package should be fairly useful as it stands, yet it is by no means complete.
I hope to implement the following changes in the near future:

■ Complete testing of Visual Architect classes and functions. (A diffs file for the VA
builder may be necessary.)

■ Incorporate bug fixes collected from the TCL 2.0 bug list.

Version History

Version 1.0, released 9 May 1994:

■ Port package for CodeWarrior DR/2.

Version 1.2, released 26 May 1994:

■ Updated for CodeWarrior DR/3.
■ Replaced Bedrock exception library with PowerPlant exception library.
■ Improved documentation.
■ Skipped version 1.1 to avoid confusion with the TCL of the same name.

Version 1.2.1, released 27 May 1994:

■ Quick fix to include a missing file (which wasn’t really missing, anyway).

Version 1.3, released 30 May 1994:

■ Updated for TCL version 2.0.2.
■ Included Template Munger application.

Think Class Library 2.0 • CodeWarrior Port Package 15

Think Class Library 2.0 • CodeWarrior Port Package 16

Acknowledgments

A special thanks to Jon Wätte who provided the MultiDiff application and inspired
(challenged?) me to attempt this port, and to the several employees at Metrowerks
who have supported this effort (especially Jonathon Hess).

Think Class Library 2.0 • CodeWarrior Port Package 16

